Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
1.
J Anim Sci Technol ; 66(1): 232-236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38618026

RESUMO

Ligilactobacillus is a genus of Gram-positive lactobacilli commonly found in the intestinal tracts of vertebrates. It has been granted a Qualified Presumption of Safety (QPS) status from the European Food Safety Authority (EFSA). One specific strain, Ligilactobacillus salivarius B4311, was isolated from fecal samples of broiler chickens from a farm associated with Chung-Ang University (Anseong, Korea). This strain was observed to have inhibitory effects against Listeria monocytogenes. In this paper, we present the complete genome sequence of Lig. salivarius B4311. The whole genome of strain B4311 comprises 2,071,255 bp assembled into 3 contigs representing a chromosome, repA-type megaplasmid, and small plasmid. The genome contains 1,963 protein-coding sequences, 22 rRNA genes, and 78 tRNA genes, with a guanine + cytosine (GC) content of 33.1%. The megaplasmid of strain B4311 was found to contain the bacteriocin gene cluster for salivaricin P, a two-peptide bacteriocin belonging to class IIb.

2.
FEMS Microbes ; 5: xtae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606354

RESUMO

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

3.
Foods ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611386

RESUMO

This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.

4.
Foods ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611432

RESUMO

Staka is a traditional Greek sour cream made mostly from spontaneously fermented sheep milk or a mixture of sheep and goat milk. At the industrial scale, cream separators and starter cultures may also be used. Staka is sometimes cooked with flour to absorb most of the fat. In this study, we employed culture-based techniques, amplicon sequencing, and shotgun metagenomics to analyze the Staka microbiome for the first time. The samples were dominated by Lactococcus or Leuconostoc spp. Most other bacteria were lactic acid bacteria (LAB) from the Streptococcus and Enterococcus genera or Gram-negative bacteria from the Buttiauxella, Pseudomonas, Enterobacter, Escherichia-Shigella, and Hafnia genera. Debaryomyces, Kluyveromyces, or Alternaria were the most prevalent genera in the samples, followed by other yeasts and molds like Saccharomyces, Penicillium, Aspergillus, Stemphylium, Coniospotium, or Cladosporium spp. Shotgun metagenomics allowed the species-level identification of Lactococcus lactis, Lactococcus raffinolactis, Streptococcus thermophilus, Streptococcus gallolyticus, Escherichia coli, Hafnia alvei, Streptococcus parauberis, and Enterococcus durans. Binning of assembled shotgun reads followed by recruitment plot analysis of single reads could determine near-complete metagenome assembled genomes (MAGs). Culture-dependent and culture-independent analyses were in overall agreement with some distinct differences. For example, lactococci could not be isolated, presumably because they had entered a viable but not culturable (VBNC) state or because they were dead. Finally, several LAB, Hafnia paralvei, and Pseudomonas spp. isolates exhibited antimicrobial activities against oral or other pathogenic streptococci, and certain spoilage and pathogenic bacteria establishing their potential role in food bio-protection or new biomedical applications. Our study may pave the way for additional studies concerning artisanal sour creams to better understand the factors affecting their production and the quality.

5.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474811

RESUMO

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Nisina , Camundongos , Animais , Nisina/metabolismo , Nisina/farmacologia , Leite/metabolismo , RNA Ribossômico 16S/genética , Lactobacillales/metabolismo , Ácido Butírico
6.
Microorganisms ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543581

RESUMO

In this study, bacterial isolates C1-4-7, D2-4-6, and M1-4-11 from Antarctic soil were phenotypically and genotypically characterized, and their antibacterial spectrum and that of cell-free culture supernatant were investigated. Finally, the effect of temperature and culture medium on the production of antimicrobial compounds was investigated. The three bacteria were identified as different strains of the genus Pseudomonas. The three bacteria were multi-drug resistant to antibiotics. They exhibited different patterns of growth inhibition of pathogenic bacteria. M1-4-11 was remarkable for inhibiting the entire set of pathogenic bacteria tested. All three bacteria demonstrated optimal production of antimicrobial compounds at 15 °C and 18 °C. Among the culture media studied, Nutrient broth would be the most suitable to promote the production of antimicrobial compounds. The thermostability exhibited by the antimicrobial molecules secreted, their size of less than 10 kDa, and their protein nature would indicate that these molecules are bacteriocin-like compounds.

7.
FEMS Microbes ; 5: xtae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495077

RESUMO

Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.

8.
BMC Microbiol ; 24(1): 85, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468236

RESUMO

Antimicrobial peptides, such as bacteriocin, produced by probiotics have become a promising novel class of therapeutic agents for treating infectious diseases. Selected lactic acid bacteria (LAB) isolated from fermented foods with probiotic potential were evaluated for various tests, including exopolysaccharide production, antibiotic susceptibility, acid and bile tolerance, antibacterial activity, and cell adhesion and cytotoxicity to gastric cell lines. Six selected LAB strains maintained their high viability under gastrointestinal conditions, produced high exopolysaccharides, showed no or less cytotoxicity, and adhered successfully to gastric cells. Furthermore, three strains, Weissella confusa CYLB30, Lactiplantibacillus plantarum CYLB47, and Limosilactobacillus fermentum CYLB55, demonstrated a strong antibacterial effect against drug-resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica serovar Choleraesuis, Enterococcus faecium, and Staphylococcus aureus. Whole genome sequencing was performed on these three strains using the Nanopore platform; then, the results showed that all three strains did not harbor genes related to toxins, superantigens, and acquired antimicrobial resistance, in their genome. The bacteriocin gene cluster was found in CYLB47 genome, but not in CYLB30 and CYLB55 genomes. In SDS-PAGE, the extract of CYLB30 and CYLB47 bacteriocin-like inhibitory substance (BLIS) yielded a single band with a size of less than 10 kDa. These BLIS inhibited the growth and biofilm formation of drug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA), causing membrane disruption and inhibiting adhesion ability to human skin HaCaT cells. Moreover, CYLB30 and CYLB47 BLIS rescued the larvae after being infected with P. aeruginosa and MRSA infections. In conclusion, CYLB30 and CYLB47 BLIS may be potential alternative treatment for multidrug-resistant bacteria infections.


Assuntos
Bacteriocinas , Alimentos Fermentados , Lactobacillales , Staphylococcus aureus Resistente à Meticilina , Probióticos , Humanos , Bacteriocinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Probióticos/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473813

RESUMO

Due to their potential application as an alternative to antibiotics, bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by bacteria, have received much attention in recent years. To identify bacteriocins within marine bacteria, most of the studies employed a culture-based method, which is more time-consuming than the in silico approach. For that, the aim of this study was to identify potential bacteriocin gene clusters and their potential producers in 51 marine Bacillota (formerly Firmicutes) genomes, using BAGEL4, a bacteriocin genome mining tool. As a result, we found out that a majority of selected Bacillota (60.78%) are potential bacteriocin producers, and we identified 77 bacteriocin gene clusters, most of which belong to class I bacteriocins known as RiPPs (ribosomally synthesized and post-translationally modified peptides). The identified putative bacteriocin gene clusters are an attractive target for further in vitro research, such as the production of bacteriocins using a heterologous expression system.


Assuntos
Bacteriocinas , Firmicutes , Família Multigênica , Antibacterianos , Peptídeos Antimicrobianos
10.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38439668

RESUMO

AIMS: Enterocins K1 and EJ97 have specific antimicrobial activity against Enterococcus faecium and Enterococcus faecalis, respectively. The aim of this study was to investigate the utility of these enterocins for in vivo treatment of systemic enterococcal infections. METHODS AND RESULTS: The antimicrobial effect in blood was analysed and compared against the effect in saline. Colony forming unit counts revealed that the enterocins killed all the bacteria within 1 hour. Additionally, the bactericidal effect against E. faecalis was more rapid in blood, indicating a possible synergy between EntEJ97 and blood. Importantly, no enterocin resistant mutants emerged in these experiments. Injecting the enterocins intraperitoneally in an in vivo mouse model and using fluorescence and minimum inhibitory concentration determination to estimate concentrations of the peptides in plasma, indicate that the enterocins exist in circulation in therapeutic concentrations. Alanine aminotransferase detection, and haemolysis analysis indicates that there is no detectable liver damage or haemolytic effect after injection. CONCLUSIONS: The study revealed that EntK1 and EntEJ97 are able to kill all bacteria ex vivo in the presence of blood. In vivo experiments determine that the enterocins exist in circulation in therapeutic concentrations without causing liver damage or haemolysis. Future experiments should test these peptides for treatment of infection in a relevant in vivo model.


Assuntos
Infecções Bacterianas , Bacteriocinas , Enterococcus faecium , Enterococos Resistentes à Vancomicina , Animais , Camundongos , Bacteriocinas/farmacologia , Hemólise , Estudos de Viabilidade , Antibacterianos/farmacologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
11.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534645

RESUMO

Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38451405

RESUMO

The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.

13.
Front Microbiol ; 15: 1337647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435696

RESUMO

Circular bacteriocins form a distinct group of antimicrobial peptides (AMPs) characterized by their unique head-to-tail ligated circular structure and functional properties. They belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) family. The ribosomal origin of these peptides facilitates rapid diversification through mutations in the precursor genes combined with specific modification enzymes. In this study, we primarily explored the bacteriocin engineering potential of circularin A, a circular bacteriocin produced by Clostridium beijerinckii ATCC 25752. Specifically, we employed strategies involving α-helix replacements and disulfide bond introductions to investigate their effects on both biosynthesis and bioactivity of the bacteriocin. The results show the feasibility of peptide engineering to introduce certain structural properties into circularin A through carefully designed approaches. The introduction of cysteines for potential disulfide bonds resulted in a substantial reduction in bacteriocin biosynthesis and/or bioactivity, indicating the importance of maintaining dynamic flexibility of α-helices in circularin A, while reduction of the potential disulfide in one case increased the activity. The 5 α-helices of circularin A were respectively replaced by corresponding helices from another circular peptide, enterocin AS-48, and modestly active peptides were obtained in a few cases. Overall, this study provides valuable insights into the engineering potential of circular bacteriocins as antimicrobial agents, including their structural and functional restrictions and their suitability as peptide engineering scaffolds. This helps to pave the way for the development of novel antimicrobial peptides with tailored properties based on circular bacteriocins.

14.
Food Chem ; 447: 138962, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518614

RESUMO

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Assuntos
Bacteriocinas , Capsicum , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Capsicum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Doenças das Plantas/microbiologia
15.
Front Microbiol ; 15: 1347830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419633

RESUMO

Introduction: In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods: The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results: The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion: This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38319538

RESUMO

Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.

17.
Microb Ecol ; 87(1): 41, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351266

RESUMO

Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.


Assuntos
Bacteriocinas , Bacteriocinas/farmacologia , Biofilmes , Bactérias , Peptídeos , Antibacterianos/farmacologia
18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
19.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393172

RESUMO

Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.


Assuntos
Bacteriocinas , Queijo , Lacticaseibacillus paracasei , Lactobacillus , Bacteriocinas/farmacologia , Staphylococcus aureus , Microbiologia de Alimentos
20.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301890

RESUMO

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...